

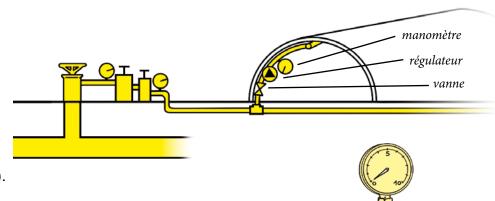
Bien concevoir son dispositif, en microaspersion sous serre.

Une eau bien répartie sur l'ensemble de la serre est une garantie pour une production homogène, économiquement rentable.

La microaspersion offre de nombreuses possibilités techniques et s'adapte à des systèmes déjà existants.

Mais, il est nécessaire de définir le dispositif optimal caractérisé par :

- le choix du matériel en fonction de la pluviométrie désirée,
- √ le maillage (écartement entre asperseurs X écartement entre rampes),
- Ia hauteur des asperseurs,
- √ la culture.

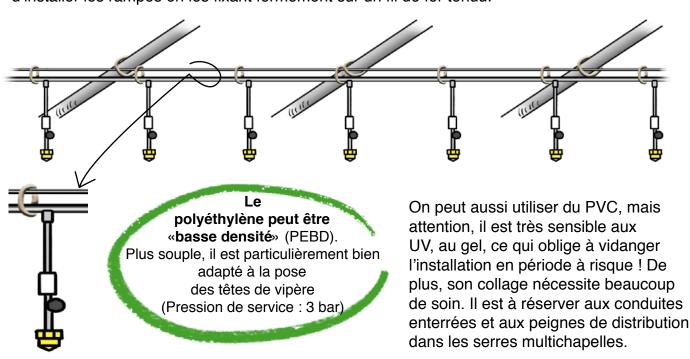

Le contrôle et l'entretien sont indispensables à un bon fonctionnement durable de l'installation. Débit et pression de l'installation seront régulièrement vérifiés pour avoir à l'asperseur <u>une pression de 2 bar</u>, pression de fonctionnement optimale de la majorité des asperseurs.

Avant le tunnel ...

Une filtration performante

Les micro-asperseurs sont équipés de buses de faible diamètre qui peuvent facilement se colmater si des impuretés sont présentes dans l'eau. Il est donc nécessaire de disposer d'une filtration performante et régulièrement entretenue :

- ✓ Dans la plupart des cas, un filtre à tamis, 200 microns, suffit, installé en sortie de station de tête.
- √ Si l'eau est chargée (eau de surface) prévoir la filtration adaptée (filtre à sable).



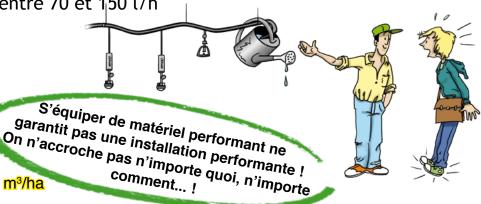
Une pression contrôlée

- ✓ Un régulateur à l'entrée de chaque tunnel va abaisser cette pression à 2,5 bar pour obtenir environ 2 bar de pression à la buse. On vérifiera la pression avec un manomètre.
- Manomètre mobile sur clapet de prise de pression

Dans le tunnel : Polyéthylène ou PVC ?

Le polyéthylène est plus facile à installer, à percer et à modifier. Il résiste au gel, mais, il a une mauvaise stabilité à la chaleur. Il ondule en période de fortes chaleurs. Il est recommandé d'installer les rampes en les fixant fermement sur un fil de fer tendu.

Trois paramètres à déterminer pour un dispositif efficace


Pluviométrie - Hauteur - Maillage

Une pluviométrie comprise entre 5 et 10 mm/h assurée par un débit des asperseurs compris entre 70 et 150 l/h

PLUVIOMÉTRIE IDÉALE SELON LA CULTURE

Sur semis: 5 mm/h

Sur mottes: 10 mm/h

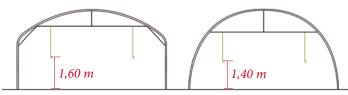
RAPPEL: 1 mm = $1 \frac{l}{m^2} = 10 \frac{m^3}{ha}$

CALCUL DE LA PLUVIOMÉTRIE MOYENNE

La pluviométrie moyennne horaire (mm/h) = Nombre de rampes x Débit d'un distributeur (l/h)

Largeur de la serre (m) x Ecartement entre asperseurs (m)

EXEMPLE


Un tunnel double rampe de 8 m de large équipé de 2 rampes espacées de 4,5 m avec des microasperseurs espacés tous les 3 m, de 120 l/h de débit à 2 bar de pression.

P (mm/h) =
$$\frac{2 \times 120 \text{ (l/h)}}{8 \text{ (m)} \times 3 \text{ (m)}}$$
 = 10 (mm/h)

Hauteur optimale: Rechercher un bon compromis entre homogénéité d'arrosage et la hauteur acceptable pour le travail dans le tunnel!

La hauteur de l'asperseur par rapport au sol dépend de la géométrie du tunnel.

Pour les tunnels à géométrie « droite », les plus récents : 1,60 m.

Pour les tunnels plus « fermés » : 1,40 m permet d'éviter un ruissellement excessif sur les parois du tunnel

Le maillage

Valeurs indicatives, pour un tunnel de 60 m de long, n'excluant pas d'autres possibilités

Largeur du tunnel	Nombre de rampes	Débit pour une pluvio entre 5 et 10 mm/h	Espacement des rampes	Espacement des asperseurs
5,00 m	1	50 à 100 l/h		1,50 à 2,00 m
7,00 m	1	100 à 150 l/h		2,00 à 3,00 m
7,00 m	2	100 à 150 m³/h	4,00 à 4,25 m	2,00 à 3,00 m
8,00 m	1*	175 à 320 l/h		3,00 à 4,00 m
8,00 m	2	100 à 150 l/h	4,50 à 4,75 m	2,00 à 3,00 m
9,30 m	2	100 à 180 l/h	5,50 à 5,75 m	2,00 à 3,00 m


Ce dispositif n'est pas conseillé sur cultures sensibles

PRESSION POUR UN FONCTIONNEMENT OPTIMAL DE L'INSTALLATION :

2 bar à l'asperseur

Prévoir une prise de manomètre à l'aide d'un tubing au dessus d'un asperseur témoin.

Avec 2,5 bar à l'entrée du tunnel, les pertes de charge dues à la rampe et au tubing doivent laisser 2,2 bar avant l'antigoutte pour avoir 2 bar à l'asperseur.

LONGUEUR MAXIMALE DES RAMPES

Les asperseurs en fin de rampe ont une pression et donc un débit inférieurs à ceux du début de rampe. Pour une irrigation homogène, cette variation sur la rampe doit être inférieure à 10%.

EXEMPLES en terrain plat avec du PEBD et un espacement entre asperseurs de 3 m : ces chiffres sont indicatifs et peuvent varier selon les marques et les modèles. Ils sont donnés pour une pression moyenne de 2 bar à l'asperseur.

Débit à l'asperseur Diamètre extérieur	70 l/h	100 l/h	120 l/h
ø 25	60 m	69 m	40 m
ø 32* puis ø 25	60 m + 60 m = 120 m	51 m + 48 m = 99 m	39 m + 39 m = 78 m
ø 32	135 m	105 m	87 m

^{*} Le diamètre 32 mm permet d'avoir des rampes plus longues mais, attention, il coûte plus cher ! Pour gagner de la longueur à moindre coût, tout en maintenant une bonne pression, on peut réduire le diamètre de 32 mm à 25 mm en cours de ligne.

Pour avoir une bonne répartition de l'eau :

- ✓ Ne pas trop resserrer les rampes ! Le défaut le plus fréquemment observé est un espacement des rampes trop faible qui nuit au bon arrosage des bords du tunnel. Sur ces zones sous irriguées, l'évaporation souvent accentuée par les dispositifs d'ouverture latérale.
- ✓ L'espacement entre 2 asperseurs doit être plus faible sur semis que sur cultures en mottes.
- ✓ Si le terrain est en pente, même légèrement, ou si le tiunnel fait plus de 80 m de long, une petite étude hydraulique peut être nécessaire pour déterminer l'mplacement idéal de l'alimentation.

... et je demande toujours à mon technicien et/ou mon installateur les caractéristiques de fonctionnement du matériel !

Les « PLUS » d'une installation performante

Des systèmes pour éviter les flaques

Pour garder une bonne homogénéité d'irrigation et éviter que l'asperseur ne goutte en fin d'arrosage, deux systèmes existent :

Le clapet

✓ En conservant les rampes pleines à la fin de l'arrosage, le clapet antividange à l'asperseur, permet un démarrage instantané de l'installation à l'arrosage suivant. C'est indispensable en arrosage fractionné sur culture en semis, mais aussi sur cultures en mottes.

ATTENTION

- Un clapet antividange provoque une perte de charge de 0,2 bar. En tenir compte dans le réglage de pression à l'entrée du tunnel!
- ✓ Le clapet rend l'installation encore plus sensible au bouchage : il est important d'avoir une eau bien filtrée.

La purge de fin de rampe

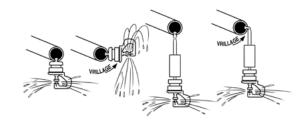
- ∨ Un système de vidange automatique en fin de rampe est moins coûteux.
- ✓ Il ne crée pas de perte de charge ni de problème de bouchage.

ATTENTION

Il vidange totalement la rampe. Le démarrage de l'irrigation n'est donc pas instantané.

Le tubing

Longueur maxi du tubing : 80 cm. Au-delà, les pertes de charge sont trop importantes.


Dans un tubing de 4/7 mm (4 mm de diamètre intérieur), la perte de charge est de :

- 0,1 bar pour un asperseur de 75 l/h
- 0,4 bar pour un asperseur de 150 l/h

Il y a différentes qualités de tubing. Le tubing rigide (blanc) est à proscrire. Il est difficile de le stabiliser en position bien verticale.

Le pendulaire : montage incontournable avec contre-poids

Il permet de compenser le vrillage des rampes et de maintenir ainsi l'ailette en position bien horizontale.

Les écarts de température provoquent une dilatation des matériaux : les emboîtements «droits» ont tendance à se déboîter.

Il existe des systèmes à baïonnette qui empêchent ce déboîtement.

ATTENTION À L'UTILISATION ABUSIVE D'ACCESSOIRES

Pour un fonctionnement optimal de l'installation et pour une bonne répartition de l'eau, il est vivement conseillé de rester sur des équipements standards et de ne pas prévoir de dispositif complexe.

Un changement d'ailette ou de buse, un dispositif antibuée ... vont modifier la forme du jet, la longueur de la portée. La répartition de l'eau au sol ne sera alors plus du tout la même!

ENTRETENIR RÉGULIÈREMENT SON INSTALLATION POUR CONSERVER SON EFFICACITÉ!

Concevoir une installation performante est essentiel mais, sans un entretien régulier, ses qualités vont se détériorer.

Avant de démarrer la saison, on vérifie la pression de l'installation, le non-colmatage des buses, la rotation régulière des ailettes, la bonne fermeture des clapets anti vidange.

Pendant la saison, on vérifie régulièrement, sur le compteur, les volumes apportés. Une augmentation anormale de consommation permettra de détecter une fuite éventuelle, une usure trop importante des buses ou une pression d'utilisation trop élevée.

En fin de saison, on effectue une purge et un détartrage avec une solution d'acide.

La durée de vie d'une installation est en moyenne de 5 ans, mais <u>après 3 années</u> d'utilisation, on vérifie le débit de quelques asperseurs. Si ce débit varie de plus de 10 %, il est temps de changer ses asperseurs ou au moins les ailettes usées.

Conséquence d'une mauvaise homogénéité de l'arrosage = Mauvaise homogénéité de la récolte !! Une
prise manomètre
à l'entrée de chaque
groupe de serres permettra
de vérifier régulièrement la
pression et de l'ajuster si
nécessaire.

Une pression trop élevée sera fortement préjudiciable à une bonne répartition de l'eau :

√ il y aura un effet «brouillard» facilement repérable,

√ les asperseurs pourront s'incliner et perdre en efficacité.

✓ les parties fragiles comme l'ailette, s'useront prématurément!

Pour en savoir plus, consulter la fiche Eau Fertile « Contrôle et entretien d'une installation d'irrigation localisée »

Illustration: Bernard NICOLAS.

Secrétariat : ARDEPI, Maison des Agriculteurs, 22 Avenue Henri Pontier 13626 Aix-en-Provence tel : 04 42 28 95 03 - fax : 04 42 17 15 01

contact-ardepi@ardepi.fr station.serail@wanadoo.fr http://www.ardepi.fr

